Abstract
The hypothalamic nonapeptide vasopressin is a known player in the pathogenesis of
chronic heart failure. According to the large body of clinical evidence, vasopressin
has an impact on salt and water imbalance, hyponatremia, and subsequent renal insufficiency
– the most common and destructive co-morbidity of patients afflicted with chronic
heart failure. Despite the well-documented elevated levels of vasopressin in the blood
of such patients, its expression in the magnocellular hypothalamic nuclei and transport
to the posterior pituitary has not yet been investigated. In addition, the literature
almost lacks the information on the contribution of another member of nonapeptide
family, oxytocin, in the pathogenesis of this disease. Here we present a postmortem
analysis of vasopressin and oxytocin-immunoreactive neurons and their terminals in
the posterior pituitary of 8 male patients (53.8±9.3 years) who had died from CHF
and 9 male controls (54.6±11.8 years). In line with previous clinical reports, our
study on hypothalami of chronic heart failure patients revealed a significant increase
in the relative profile density (+29%) of vasopressin-positive neurons in the hypothalamic
supraoptic nucleus. Consistently we found a significant increase in the relative optic
density of vasopressin-immunoreactivity in the posterior pituitary (+33%) of these
patients. In contrast, the similar analysis applied for oxytocin neurons revealed
no statistically significant differences to controls. In conclusion, our study provides
the morphological evidence for activation of vasopressin (but not oxytocin) expression
and vasopressin transport to the posterior pituitary in patients with chronic heart
failure.
Key words
vasopressin - oxytocin - hypothalamus - chronic heart failure
References
- 1
Kannel WB, Belanger AJ.
Epidemiology of Heart Failure.
Am Heart J.
1991;
121
951-957
- 2
McMurray, Pfeffer MA.
Heart failure.
Lancet.
2005;
365
1877-1889
- 3
Robertson GL.
Physiology of ADH secretion.
Kidney Int.
1987;
21
((Suppl))
S20-S26
- 4
Dudaev VA, Gorin V, Borodkin VV, Diukov IV, Nechaeva NI.
Vasopressin content of the blood in ischemic heart disease patients and its interrelation
with other hormones.
Kardiologiia.
1986;
26
98-101
- 5
Kjaer A, Hesse B.
Heart failure and neuroendicrine activation: diagnostic, prognostic and therapeutic
perspectives.
Clin Physiol.
2001;
21
661-672
- 6
Nakamura T, Funayama H, Yoshimura A, Tsuruya Y, Saito M, Kawakami M, Ishikawa SE.
Possible vascular role of increased plasma arginine vasopressin in congestive heart
failure.
Int J Cardiol.
2006;
106
191-195
- 7
LeJemtel TH, Serrano C.
Vasopressin dysregulation: hyponatremia, fluid retention and congestive heart failure.
Int J Cardiol.
2007;
120
1-9
- 8
Ventura RR, Gomes DA, Reis WL, Elias LL, Castro M, Valença MM, Carnio EC, Rettori V,
McCann SM, Antunes-Rodrigues J.
Nitrergic modulation of vasopressin, oxytocin and atrial natriuretic peptide secretion
in response to sodium intake and hypertonic blood volume expansion.
Braz J Med Biol Res.
2002;
35
1101-1109
- 9
Lauand F, Ruginsk SG, Rodrigues HL, Reis WL, de Castro M, Elias LL, Antunes-Rodrigues J.
Glucocorticoid modulation of atrial natriuretic peptide, oxytocin, vasopressin and
Fos expression in response to osmotic, angiotensinergic and cholinergic stimulation.
Neuroscience.
2007;
147
247-257
- 10
Chou CL, DiGiovanni SR, Mejia R, Nielsen S, Knepper MA.
Oxytocin as an antidiuretic hormone.
Am J Physiol.
1995;
269
((1 Pt 2))
F70-F77
, , F78–F85
- 11
Haanwinckel MA, Elias LK, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J.
Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume
expansion in the rat.
Proc Nat Acad Sci USA.
1995;
92
7902-7906
- 12
Buijs RM, Swaab DF.
Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in
the limbic system.
Cell Tissue Res.
1979;
204
355-365
- 13
Sawchenko PE, Swanson LW.
Immunohistochemical identification of neurons in the paraventricular nucleus of hypothalamus
that project to the medulla or to the spinal cord in the rat.
J Comp Neurol.
1982;
205
260-272
- 14
Maier T, Dai WJ, Csikós T, Jirikowski GF, Unger T, Culman J.
Oxytocin Pathways Mediate the Cardiovascular and Behavioral Responses to Substance
P in the Rat Brain.
Hypertension.
1998;
31
480-486
- 15
Wsoł A, Cudnoch-Jędrzejewska A, Szczepanska-Sadowska E, Kowalewski S, Dobruch J.
Central oxytocin modulation of acute stress-induced cardiovascular responses after
myocardial infarction in the rat.
Stress.
2009 Feb;
9
1
, [Epub ahead of print]
- 16
Sivukhina EV, Poskrebysheva AS, Smurova IuV, Dolzhikov AA, Morozov IuE, Jirikowski GF,
Grinevich V.
Altered hypothalamic-pituitary-adrenal axis activity in patients with chronic heart
failure.
Horm Metab Res.
2009;
41:
, in press
- 17
Sivukhina EV, Dolzhikov AA, Morozov IuE, Jirikowski GF, Grinevich V.
Effects of chronic alcoholic disease on magnocellular and parvocellular hypothalamic
neurons in men.
Horm Metab Res.
2006;
38
382-390
- 18 Swaab DF. Neurobiology and neuropathology of the human hypothalamus. In: Bloom
FE, Bjorklund A, Hökfelt T, eds
Handbook of Chemical Neuroanatomy Vol. 13. Amsterdam: Elsevier 1997: 39-138
- 19
Goldsmith SR.
Vasopressin receptor antagonists: mechanisms of action and potential effects in heart
failure.
Cleve Clin J Med.
2006;
73
((Suppl 2))
S20-S23
- 20
Chatterjee K.
Neurohormonal activation in congestive heart failure and the role of vasopressin.
Am J Cardiol.
2005;
95
8B-13B
- 21
Oh MS.
Management of hyponatremia and clinical use of vasopressin antagonists.
Am J Med Sci.
2007;
333
101-105
- 22
Sanghi P, Uretsky BF, Schwarz ER.
Vasopressin antagonism: a future treatment option in heart failure.
Eur Heart J.
2005;
26
538-543
- 23
Rai A, Whaley-Connell A, McFarlane S, Sowers JR.
Hyponatremia, Arginine Vasopressin dysregulation, and Vasopressin receptor antagonism.
Am J Nephrol.
2006;
26
579-589
- 24
Gheorghiade M, Konstam MA, Burnett Jr. JC, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE,
Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C.
Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients
hospitalized for heart failure: the EVEREST Clinical Status Trials.
JAMA.
2007;
297
1332-1343
- 25
Burrell LM, Risvanis J, Johnston CI, Naitoh M, Baldinq LC.
Vasopressin receptor antagonism: a therapeutic option in heart failure and hypertension.
Exp Physiol.
2000;
85
((Suppl))
259S-265S
- 26
Ramos AT, Troncone LR, Tufik S.
Suppression of Adrenocorticotrophic Hormone Secretion by Simultaneous Antagonism of
Vasopressin 1b and CRH-1 Receptors on Three Different Stress Models.
Neuroendocrinology.
2006;
84
309-316
- 27
Holmes MC, Antoni FA, Aguilera G, Catt KJ.
Magnocellular axons in passage through the median eminence release vasopressin.
Nature.
1986;
319
326-329
- 28
Kasatkina LV, Pivovarov VN, Markova EV, Salem S, Rossel's AN.
Blood hormones in chronic ischemic heart disease and acute myocardial infarct.
Kardiologiia.
1979;
19
93-98
- 29
Jezova D, Skultetyova I, Tokarev DI, Bakos P, Vigas M.
Vasopressin and oxytocin in stress.
Ann NY Acad Sci.
1995;
771
192-203
- 30
Engelmann M, Landgraf R, Wotjak CT.
The hypothalamic-neurohypophyseal system regulates the hypothalamic-pituitary adrenal
axis under stress: an old concept revisited.
Front Neuroendocrinol.
2004;
25
132-149
- 31
Laguna-Abreu MT, Koenigkam-Santos M, Colleta AM, Elias PC, Moreira AC, Antunes-Rodrigues J,
Elias LL, Castro M.
Time course of vasopressin and oxytocin secretion after stress in adrenalectomized
rats.
Horm Metab Res.
2005;
37
84-88
- 32
Landgraf R, Neumann ID.
Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and
variable modes of neuropeptide communication.
Front Neuroendocrinol.
2004;
25
150-176
Correspondence
V. GrinevichMD, PhD
Group Leader
Department of Molecular Neurobiology
Max-Planck-Institute for Medical Research
Jahnstrasse 29
69120 Heidelberg
Germany
Phone: +49 6221 486 174 (office)+49 6221 486 128 (lab)
Fax: 49 6221 486 110
Email: Valery.Grinevich@mpimf-heidelberg.mpg.de